Dynamic Models of the Sun from the Convection Zone to the Chromosphere

نویسندگان

  • Sven Wedemeyer-Böhm
  • S. Wedemeyer-Böhm
چکیده

The chromosphere in internetwork regions of the quiet Sun was regarded as a static and homogeneous layer for a long time. Thanks to advances in observations and numerical modelling, the wave nature of these atmospheric regions received increasing attention during the last decade. Recent three-dimensional radiation magnetohydrodynamic simulations with CO5BOLD feature the chromosphere of internetwork regions as a dynamic and intermittent phenomenon. It is a direct product of interacting waves that form a mesh-like pattern of hot shock fronts and cool post-shock regions. The waves are excited self-consistently at the top of the convection zone. In the middle chromosphere above an average height of 1000 km, plasma beta gets larger than one and magnetic fields become more important. The model chromosphere exhibits a magnetic field that is much more homogeneous than in the layers below and evolves much faster. That includes fast propagating (MHD) waves. Further improvements of the simulations like time-dependent hydrogen ionisation are currently in progress. This class of models is capable of explaining apparently contradicting diagnostics such as carbon monoxide and UV emission at the same time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling from the photosphere to the chromosphere and the corona

The atmosphere of the Sun is characterized by a complex interplay of competing physical processes: convection, radiation, conduction, and magnetic fields. The most obvious imprint of the solar convection and its overshooting in the low atmosphere is the granulation pattern. Beside this dominating scale there is a more or less smooth distribution of spatial scales, both towards smaller and large...

متن کامل

Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere

Three-dimensional numerical simulations with COBOLD, a new radiation hydrodynamics code, result in a dynamic, thermally bifurcated model of the non-magnetic chromosphere of the quiet Sun. The 3-D model includes the middle and low chromosphere, the photosphere, and the top of the convection zone, where acoustic waves are excited by convective motions. While the waves propagate upwards, they stee...

متن کامل

Small-scale structure and dynamics of the lower solar atmosphere

The chromosphere of the quiet Sun is a highly intermittent and dynamic phenomenon. Three-dimensional radiation (magneto-)hydrodynamic simulations exhibit a meshlike pattern of hot shock fronts and cool expanding post-shock regions in the sub-canopy part of the inter-network. This domain might be called “fluctosphere”. The pattern is produced by propagating shock waves, which are excited at the ...

متن کامل

Three dimensional numerical simulations of acoustic wave field in the upper convection zone of the

Results of numerical 3D simulations of propagation of acoustic waves inside the Sun are presented. A linear 3D code which utilizes realistic OPAL equation of state was developed by authors. Modified convectively stable standard solar model with smoothly joined chromosphere was used as a background model. High order dispersion relation preserving numerical scheme was used to calculate spatial de...

متن کامل

Numerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection

The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006